ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ХИМИИ ТВЕРДОГО ТЕЛА И МЕХАНОХИМИИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ИХТТМ СО РАН)

Рабочая программа дисциплины

ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЙ ТВЕРДЫХ ТЕЛ

основной образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре

Направление подготовки: 04.06.01 Химические науки

Направленность (профиль) подготовки: «Химия твердого тела»

Рабочая программа дисциплины «Физические методы исследования твердых тел» составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования (ФГОС ВО) по направлению подготовки 04.06.01 Химические науки (уровень подготовки кадров высшей квалификации).

ФГОС ВО введен в действие приказом Минобрнауки России от 30.07.2014 N 869.

Программа утверждена на заседании Ученого совета ИХТТМ СО РАН, протокол № 6 от 25 июня 2018 г.

Программу разработали:

профессор ИХТТМ СО РАН, д-р хим. наук, ст. науч. сотр. Уваров Н.Ф.

доцент ИХТТМ СО РАН, канд. хим. наук Матейшина Ю.Г.

Ответственный за образовательную программу

д.х.н., профессор

О.И. Ломовский

1. Цели и задачи дисциплины.

Цель дисциплины — формирование у аспирантов целостного представления об объектах и методах исследования в области химии твердого тела.

Аспиранты будут ознакомлены с современными методами исследования твердых тел, такими как различные виды микроскопии (сканирующая зондовая, электронная), оптические, рентгеновские методы исследования и др., а также с возможностями интерпретации информации, которую можно получить при помощи этих методов. В курсе кратко изложены основные теоретические положения рассматриваемых вопросов, демонстрируется практическая значимость получаемых знаний на примере современных достижений в области химии твердого тела. Дисциплина призвана помочь аспирантам, обучающимся по направленности программы аспирантуры «Химия твердого тела», продолжить более глубокое изучение различных физических методов исследования с учетом последних достижений в этих областях науки.

Задачи дисциплины: приобретение знаний и умений в области методов исследования строения и свойств твердых тел и анализа полученных данных в процессе выполнения научно-исследовательской работы.

2. Место дисциплины в структуре образовательной программы.

Дисциплина «Физические методы исследований твердых тел» относится к вариативной части Блока 1 «Дисциплины (модули)» основной образовательной программы аспирантуры по направлению подготовки 04.06.01 «Химические науки», реализуемой в Федеральном государственном бюджетном учреждении науки Институте химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН).

Дисциплина «Физические методы исследований твердых тел» является составной частью модуля «Химия твердого тела» и направлена на подготовку к сдаче кандидатского экзамена.

Результаты освоения дисциплины «Физические методы исследований твердых тел» используются в следующих дисциплинах данной ООП:

- Физико-химическая механика и механохимия;
- Реакционная способность твердых тел;
- Кинетика гетерогенных реакций;
- Структура и свойства современных материалов.

Уровень начальной подготовки аспиранта: для успешного освоения дисциплины необходимо знать основные положения общей, неорганической, аналитической химии, физики, высшей математики, иметь представления об использовании компьютерной техники для обработки результатов химического эксперимента. Дисциплина закладывает знания и навыки для подготовки кандидатской диссертации.

3. Планируемые результаты обучения по дисциплине «Физические методы исследований твердых тел».

Код	Содержание компетенции	Планируемые результаты обучения по					
компе-		дисциплине					
тенции							
Универс	альные компетенции						
УК-1	Способность к критическому	Уметь анализировать преимущества и					
	анализу и оценке современных	недостатки современных физических					

	T					
	научных достижений,	методов исследования твердых тел.				
	генерированию новых идей при					
	решении исследовательских и					
	практических задач, в том числе					
	в междисциплинарных областях.					
УК-3	Готовность участвовать в работе	Уметь представлять материалы				
	российских и международных	исследований в части использованных				
	исследовательских коллективов	физических методов для опубликования в				
	по решению научных и научно-	виде статей и тезисов докладов.				
		виде статей и тезисов докладов.				
УК-5	образовательных задач.	V				
УK-3	Способность планировать и	Уметь выбирать необходимые физические				
	решать задачи собственного	методы исследования твердых тел,				
	профессионального и	модифицировать существующие и				
	личностного развития.	разрабатывать новые методы исходя из				
		задач конкретного исследования по				
		выбранной теме.				
Общепро	офессиональные компетенции					
ОПК-1	Способность самостоятельно	Знать основные физические методы				
	осуществлять научно-	исследования твердых тел.				
	исследовательскую деятельность	•				
	в соответствующей					
	профессиональной области с					
	использованием современных					
	методов исследования и					
	информационно-					
OHIC 2	коммуникационных технологий.	X 7 1				
ОПК-2	Готовность организовать работу	Уметь формулировать и ставить задачи,				
	исследовательского коллектива в	возникающие в ходе научно-				
	области химии и смежных наук.	исследовательской деятельности, связанные				
		с использованием физических методов				
		исследования твердых тел.				
ОПК-3	Готовность к преподавательской	Знать обучающий материал по физическим				
	деятельности по основным	методам исследования твердых тел				
	образовательным программам	всесторонне и глубоко, чтобы использовать				
	высшего образования.	его в своей преподавательской				
	_	деятельности.				
Професс	иональные компетенции					
ПК-1	Владение методологией	Уметь обоснованно выбирать наиболее				
	теоретических и	подходящие физические методы для				
	экспериментальных	исследования физико-химических свойств и				
	исследований в области химии	структуры твердых тел.				
	твердого тела, владение	отруктуры твордык тол.				
	культурой научного					
	исследования в области химии					
	твердого тела, в том числе с					
	использованием новейших					
	информационно-					
	коммуникационных технологий.					
ПК-2	Способность к разработке новых	Знать основные физические методы,				
	методов исследования и их	которые могут быть использованы при				
	применению в самостоятельной	решении конкретных задач химии твердого				
	научно-исследовательской	тела, их преимущества и ограничения.				
	· · ·					

	#24m2#11120m11 P 25-22-1	
	деятельности в области химии	
	твердого тела с учетом правил	
	соблюдения авторских прав.	
ПК-3	Способность к самостоятельной	Владеть навыками применения
	(в том числе руководящей)	современных физических методов для
	научно-исследовательской	исследования твердых тел.
	деятельности, требующей	
	широкой фундаментальной	
	подготовки в современных	
	направлениях химии твердого	
	тела, глубокой	
	специализированной подготовки	
	в выбранном направлении,	
	владения навыками	
	современных методов	
	исследования.	
ПК-4	Владение фундаментальными	Знать современные физические методы
	знаниями в основных разделах	исследования твердых тел и физические
	химии твердого тела, включая	принципы, на которых основаны эти
	проблемы строения и	методы.
	реакционной способности	методы.
	твердых веществ, методы	Владеть техникой экспериментальных
	синтеза различных классов	исследований в области химии твердого
	твердофазных соединений,	тела с использованием различных
	методы исследования свойств	физических методов.
	твердофазных веществ и	физических методов.
	материалов; владение техникой	
	=	
	экспериментальных	
	исследований; умение	
	использовать информационно-	
	поисковые системы в области	
THC 5	химии твердого тела.	D
ПК-5	Наличие опыта	Владеть навыками представления
	профессионального участия в	результатов исследований, полученных с
	научных дискуссиях, умение	помощью различных физических методов, в
	представлять полученные в	докладах, отчетах и научных публикациях.
	исследованиях результаты в	
	виде докладов, отчетов и	
	научных публикаций в	
	рецензируемых российских и	
	международных изданиях.	

4. Объем, структура и содержание дисциплины.

4.1. Объем и структура дисциплины:

Объем дисциплины составляет 2 зачетные единицы, всего 72 академических часа, из которых 42 часов составляет контактная работа аспиранта с преподавателем (18 часов - занятия лекционного типа, 18 часов – научно-практические занятия, 4 часа - групповые консультации, 2 часа - мероприятия промежуточной аттестации), 30 часов составляет самостоятельная работа аспиранта.

Таблица 4.1

Показатель объема дисциплины и	Семестр
вид деятельности	1
Объем дисциплины в зачетных единицах	2
Объем дисциплины в часах	72
Всего занятий в контактной форме, час	42
Лекции, час.	18
Практические занятия, час.	18
Аттестация, час	2
Консультации, час.	4
Самостоятельная работа, час.	30
Вид аттестации	Дифференцированный зачет

4.2. Содержание дисциплины:

Таблица 4.2

		Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу аспирантов и трудоемкость (в часах)					Формы текущего контроля успеваемости промежуточной
№ п/п	Наименование разделов (тем) дисциплины			Лекции	Практические занятия	Самост. работа	Консультации	Аттестация	аттестации
	Введение. Общие понятия. Исследование механических, акустических свойств	1	1,2	2	2	3			
	Методы исследования тепловых и термических свойств.	1	3,4	2	2	3			Контрольные вопросы
	Методы исследования термических и механических свойств	1	5,6	2	2	3			Контрольные вопросы
	Методы исследования барических и термобарических свойств.	1	7,8	2	2	3			Контрольные вопросы
5	Методы исследования оптических свойств (Микроскопия).	1	9, 10	2	2	3			Контрольные вопросы
6	Методы исследования дифракционных свойств	1	11,12	2	2	3	2		Контрольные вопросы
	Методы исследования оптических свойств.	1	13,14	2	2	3			Контрольные вопросы
8	Методы исследования транспортных и	1	15,16	2	2	3			Контрольные вопросы

	электрических свойств								
9	Методы исследования	1	17	1	1	3			Контрольные
	магнитных свойств	1	1/	1	1	3			вопросы
10	Прочие методы исследования	1	18	1	1	2			Контрольные
		1	10	1	1	3			вопросы
							2	2	Диф. зачет
	Всего:			18	18	30	4	2	72 часа

Программа курса лекций

- 1. Введение. Общие понятия. Исследование механических, акустических свойств. Дается краткое описание основных методов измерения и исследования механических и акустических свойств. Рассмотрены примеры получаемой информации и особенности ее интерпретации для наиболее практически значимых и распространенных методов исследования
- 2. Методы исследования тепловых и термических свойств. Описаны основы методов термического анализа, термографии, пирометрии, калориметрии, дифференциального термического анализа (ДТА) и дифференциальной сканирующей калориметрии (ДСК). Приводится описание и интерпретация в доступной форме практически значимых результатов, которые можно получить при использовании этих методов. Приведены схемы устройств и экспериментов. Особое внимание уделено определению таких свойств твердых тел как теплопроводность и теплоемкость. Возможности применения вышеперечисленных методов продемонстрированы на примере новейших работ, выполненных как в ведущих международных исследовательских центрах, так и в Институтах СО РАН.
- 3. Методы исследования термических и механических свойств. Рассмотрены физические принципы, характер получаемой информации и особенности ее интерпретации для наиболее распространенных методов исследования термических и механических свойств. На примере метода термогравиметрии показано, как количественно можно определить энтальпии химических и физических превращений, изучить фазовые переходы, происходящие в твердом теле при плавлении, перестройке кристаллической структуры, кипении, возгонке и испарении.
- 4. Методы исследования барических и термобарических свойств. Приведена общая схема проведения барических и термобарических исследований при различных давлениях с использованием самого современного оборудования. Рассмотрены основные принципы, лежащие в основе методов исследования барических и термобарических свойств. Проведено сравнение представленных методов. Рассмотрены основные методы, которые можно использовать в совокупности с вышеописанными для получения дополнительной информации.
- 5. Методы исследования оптических свойств (Микроскопия). Введены основные понятия оптической микроскопии: законы геометрической оптики, где используются эффекты отражения, преломления, поглощения и рассеяния света. Определена область использования оптической микроскопии: для изучения морфологии кристаллов, реагентов, продуктов; исследования дефектов (точечных, линейных); исследования границ раздела фаз и непосредственно (in situ) наблюдения за кинетикой протекания различных процессов (химических реакций, фазовых переходов, и т.д.). Особое внимание уделено методам, в которых используются другие источники помимо видимого света: УФ излучение (люминесцентная микроскопия, обладающая высокой чувствительностью), ИК- и КР излучение. Приведены краткие характеристики и сравнение таких методов как электронная микроскопия, ионная микроскопия, атомная силовая микроскопия, поляризационная микроскопия, сканирующая туннельная микроскопия и др. Приведены возможности применения вышеперечисленных методов на примере новейших работ, выполненных как в ведущих международных исследовательских центрах, так и в

Институтах СО РАН.

- 6. Методы исследования дифракционных свойств. Рассмотрены основы методов рентгеновской дифракции, в которых в качестве источника дифракции можно использовать не только электромагнитные волны, но и электроны и нейтроны. Рассмотрены основные физические принципы, лежащие в основе дифракционных методов исследования. Дано краткое описание методам: Лауэ, с использованием камеры Гинье, Дебая-Шеррера. Приведено описание особенностей установок, которые используются для реализации этих экспериментов. Дан сравнительный анализ результатов, получаемых при помощи этих методов, и указаны возможности использования дифракционных методов в том или ином случае. Дополнительно охарактеризованы такие методы, как малоугловое рассеяние, дифракция с использованием синхротронного излучения и приведены их возможности. Приведено описание для таких методов как EXAFS, электронография, нейтронография и указаны возможности использования этих методов.
- 7. Методы исследования оптических свойств. Рассмотрены основные явления, происходящие при поглощении света веществом: поглощение, отражение, испускание. Рассмотрены физические основы методов исследования оптических свойств. Подробно охарактеризованы основные и практически используемые методы исследования: рентгеновская спектроскопия, Оже-спектроскопия, спектроскопия ультрафиолетового (УФ-спектроскопия) и видимого света, колебательная ИК- и КР-спектроскопия, инфракрасная спектроскопия, микроволновая и диэлектрическая спектроскопия. Приведены краткие характеристики установок. Приведен сравнительный анализ результатов и определены области использования этих методов.
- 8. Методы исследования транспортных и электрических свойств. Введены основные понятия: массоперенос, внутренняя диффузия, самодиффузия, поверхностная диффузия. Рассмотрены основные диффузионные механизмы и уравнения диффузии, диффузия невзаимодействующих атомов за счет градиента концентраций и поверхностная диффузия атомных кластеров и островков. Приведены краткое описание и физические основы контактных и бесконтактных методов исследования: метода кондуктометрии, Тубандта, потенциометрии и других. На примерах показаны возможности этих методов.
- 9. Методы исследования магнитных свойств. Дано объяснение возникновения магнитных свойств у твердых тел. Введены основные понятия: намагниченность, магнитная проницаемость и восприимчивость, магнитный момент. Указаны два типа методов магнитных измерений: стационарные (магнитного взвешивания Гуи и Фарадея) и резонансные (электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР) и ядерного гамма резонанса (ЯГР, мессбауэровской спектроскопии)) и приведены их краткие характеристики. Приведен краткий анализ результатов, полученных с использованием этих методов.
- 10. Прочие методы исследования. Рассмотрены методы определения плотности керамических образцов, пористости материалов, в частности продуктов реакции. Указаны способы определения размера частиц с помощью рентгеновской дифракции, малоуглового рассеяния, фотонно-корреляционной спектроскопии и лазерного рассеяния. Описаны адсорбционные методы определения удельной поверхности и распределения пор по размерам.

5. Самостоятельная работа обучающихся.

Таблица 5.1

Виды работ	Количество часов
Работа с конспектами лекций; проработка лекционных	30
материалов по конспекту лекций на основании заданий,	
подготовленных преподавателем; изучение основной и	
дополнительной литературы; подготовка к текущему и	

6. Образовательные технологии.

Формы организации учебного процесса: лекции, контрольные вопросы, самостоятельная работа аспиранта, консультации, экзамен.

Отличительной особенностью курса является применение в нем кроме лекций проведения контрольных опросов. Каждая лекция начинается с опроса, результат которого может существенным образом повлиять на итоговую оценку аспиранта. Обратная связь обеспечивается тем, что опрос ведет сам лектор, поэтому он может оперативно скорректировать лекционный курс в зависимости от полученных результатов в усвоении материала. Опросы происходят в форме дискуссии преподавателя с аспирантами (аналог «круглого стола», в котором преподавателю отводится роль ведущего), в ходе которых каждый из участников – аспиранты или преподаватель имеют право задавать вопросы и участвовать в выработке альтернативных решений разбираемых проблем. Таким образом, на всех занятиях реализуется интерактивная форма обучения. В результате преподаватель предварительно оценивает уровень подготовки и активности аспиранта в баллах.

7. Фонд оценочных средств для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины.

7.1. Формы текущего контроля и промежуточной аттестации по дисциплине.

Программой дисциплины предусмотрены следующие виды контроля:

<u>Текущий контроль</u>. В течение семестра по мере ознакомления с лекционным материалом аспирантам предлагаются вопросы, относящиеся к применению конкретных физико-химических методов для задач химии твердого тела. В результате преподаватель предварительно оценивает уровень подготовки аспиранта в баллах по пятибалльной шкале.

<u>Промежуточная аттестация</u>. Промежуточная аттестация по итогам освоения дисциплины проводится в форме зачета. Зачет проводится в виде конференции. Аспиранту предлагается детально описать и обсудить методы исследования, использованные в научной статье, выданной аспиранту для предварительного ознакомления. Оценка ставится в соответствии с уровнем понимания аспирантом сути работы, умения не только описать экспериментальные методы, изложенные в статье, но и предложить дополнительные физические методы исследования. Зачет оценивается по пятибалльной шкале.

Итоговая оценка ставится с учетом баллов, заработанных аспирантов в течение семестра, и оценкой поставленной преподавателем за зачет.

7.2. Критерии оценивания.

Таблица 7.2

Оценка	Критерии оценки				
Отлично	Аспирант строит ответ логично в соответствии с планом,				
	обнаруживает глубокое знание теоретических вопросов. Уверенно отвечает на дополнительные вопросы. При ответе грамотно использует научную лексику.				
Хорошо	Аспирант строит ответ в соответствии с планом, обнаруживает				

	хорошее знание теоретических вопросов. Ответ содержит ряд несущественных неточностей. Наблюдается некоторая неуверенность или неточность при ответе на дополнительные вопросы. Речь грамотная с использованием научной лексики.
Удовлетворительно	Ответ аспиранта недостаточно логически выстроен, обнаруживается слабость в развернутом раскрытии теоретических вопросов, хотя основные понятия раскрываются правильно. Наблюдается сильная степень неуверенности при ответе на дополнительные вопросы. Научная лексика используется ограниченно.
Неудовлетворительно	Аспирант не может раскрыть содержание основных понятий и теорий. Проявляет стремление подменить научное обоснование проблемы рассуждением бытового плана. Ответ содержит ряд серьезных неточностей. Преобладает бытовая лексика. Аспирант не способен выполнить практическое задание.

7.3. Контролирующие материалы.

Перечень контрольных вопросов по дисциплине «Физические методы исследования твердых тел»

- 1. Перечислить основные методы определения механических свойств твердых тел.
- 2. Дать примеры твердофазных реакций, сопровождающихся изменением массы. Как исследовать эти процессы?
- 3. Описать схемы оптико-механического и интерференционного дилатометра.
- 4. Перечислить физические принципы, лежащие в основе дифференциального термического анализа.
- 5. Описать два способа регистрации результатов термического анализа.
- 6. Рассказать, каким образом можно использовать информацию о тепловых эффектах для изучения твердофазных реакций.
- 7. Описать схемы установок для физико-химических исследований при высоких давлениях.
- 8. На чем основан спектроскопический метод исследования твердых тел оптическая микроскопия?
- 9. Объяснить физические принципы Оже-электронной спектроскопии (ОжеЭС)?
- 10. На чем основан спектроскопический метод исследования твердых тел: инфракрасная спектроскопия (ИКС)?
- 11. Объяснить принцип действия электронного микроскопа?
- 12. В чем физическая суть структурного метода исследования: дифракция медленных электронов (ДМЭ)?
- 13. В чем суть текстурного метода исследования: сканирующая электронная микроскопия?
- 14. В чем заключаются особенности, преимущества и недостатки метода просвечивающей электронной микроскопии (ПЭМ)?
- 15. Объяснить принцип работы атомно-силового микроскопа (АСМ)?
- 16. На чем основан микроскопический метод исследования твердых тел: зондовая микроскопия?
- 17. В чем основная суть метода Лауэ?
- 18. На чем основан дифракционный метод исследования твердых тел: рентгеновская дифрактография?

- 19. Описать дифракционные методы исследования твердых тел с использованием синхротронного излучения?
- 20. Как получают спектры EXAFS. Какую информацию можно извлечь из этих спектров?
- 21. На чем основан дифракционный метод исследования твердых тел: электронография и нейтронография?
- 22. Для каких целей используются методы рентгеновской спектроскопии?
- 23. Описать физические принципы спектроскопии ультрафиолетового (УФспектроскопия) и видимого света?
- 24. Какую химическую информацию можно получить с помощью колебательной спектроскопии (ИК- и КР-спектроскопии)?
- 25. Какую информацию дают химику микроволновые и диэлектрические спектры кристаллов?
- 26. Описать методы исследования диффузии и ионного переноса в твердых телах.
- 27. Для решения каких задач химии твердого тела можно использовать методы потенциометрии?
- 28. Какие твердофазные системы можно изучать методами ЭПР?
- 29. Чем отличается спектр ЯМР в кристаллах от аналогичных спектров в жидкостях и газах и почему?
- 30. В чем уникальность и ограничения метода мессбауэровской спектроскопии?

8. Учебно-методическое и информационное обеспечение дисциплины.

8.1. Основная литература:

- 1. Р. Драго. Физические методы в химии: в 2 т. М.: Мир, 1981. т. 1, 2. (электронный pecypc: http://booksonchemistry.com/index.php?id1=3&category=fizhim&author=drago-r).
- 2. А. Вест. Химия твердого тела. Теория и приложения: В 2-х частях. Пер. с англ. М.: Мир, 1988. http://booksonchemistry.com/index.php?id1=3&category=inorganic%20chemistry&author=vest-a&book=19881
- 3. И.М. Жарский, Г.И. Новиков. Физические методы исследования в неорганической химии. М.: Высшая школа, 1988.
- 4. Стронберг А.Г. Физическая химия: Учеб. для хим. спец. Вузов. 5-е издание. М.: Высш. шк., 2003. 527 с.
- 5. Багоцкий В.С. Основы электрохимии. М.: Химия, 1988. 400 с. (электронный ресурс: http://booksonchemistry.com/index.php?id1=3&category=electrochem&author=bagockiy-vs)
- 6. Л.В. Вилков, Ю.А. Пентин. Физические методы исследования в химии. Резонансные и электрооптические методы: Учеб. для хим. спец. вузов. М.: Высшая школа, 1989. 288 с. (электронный ресурс http://chemteq.ru/library/analytical/0032.html).
- 7. Бранд Дж., Эглинтон Г. Применение спектроскопии в органической химии. М.: Мир, 1967. (электронный ресурс: http://chemteq.ru/library/analytical.html).
- 8. Гармаш А.В. Введение в спектроскопические методы анализа. Оптические методы анализа. М.: РАН ВХК, 1995. (электронный ресурс: http://chemteq.ru/library/analytical.html?start=20).

8.2. Дополнительная литература:

- 1. В.Т. Калинников, Ю.В. Ракитин. Введение в магнетохимию. М.: Наука, 1980.
- 2. Н.М. Сергеев. Спектроскопия ЯМР: Учеб. пособие. М.: Изд. Моск. ун-та, 1981. 279 с.
- 3. Х. Гюнтер. Введение в курс спектроскопии ЯМР. М.: Мир, 1984. 478 с.
- 4. В.Н. Чеботин. Физическая химия твердого тела. М.: Химия. 1982.

- 5. Ф. Крегер. Химия несовершенных кристаллов. М.: Мир. 1969. http://www.geokniga.org/bookfiles/geokniga-himiya-nesovershennyh-kristallov.djvu.
- 6. А.К. Иванов-Шиц, И.В. Мурин. Ионика твердого тела. СПбГУ, 2002.
- 7. Структурные методы и оптическая спектроскопия: Учеб. пособие. М.: Высш. шк., 1987. 366 с.
- 8. Б.Е. Зайцев. Спектроскопические методы в неорганической химии. М. Химия, 1979.
- 9. В.И. Нефедов. Рентгеноэлектронная спектроскопия. М.: Знание. 1983.
- 10. Дж. Лакович. Основы флуоресцентной спектроскопии. М.: Мир, 1986.
- 11. С.С. Горелик, Ю.А. Скаков, Л.Н. Расторгуев. Рентгенографический и электроннооптический анализ. М: МИСИС, 1994.
- 12. Физические методы исследования неорганических веществ; под ред. А.Б. Никольского. Academia, 2006. 448 с.
- 13. Физические методы исследований и свойства неорганических соединений / под ред. Н. Хилла, Р. Дея. М.: Мир, 1970.
- 14. Я.С. Уманский, Ю.А. Скаков, Л.Н. Расторгуев. Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982.
- 15. П. Хирш, А. Хови и др. Электронная микроскопия тонких кристаллов. М.: Мир, 1968.
- 16. А.А. Суслов, С.А. Чижик. Сканирующие зондовые микроскопы (обзор) // Материалы, Технологии, Инструменты. 1997. Т.2. №3. С. 78–89.
- 17. Лейбниц Э., Штруппе Х.Г. Руководство по газовой хроматографии. Т. 1, 2. М.: Мир, 1988.
- 18. Л.Н. Сидоров, М.В. Коробов, Л.В. Журавлева. Масс-спектральные термодинамические исследования. М.: Изд-во Моск. ун-та, 1985. 208 с.
- 19. Н.С. Вульфсон, В.Г. Аикин, А.И. Микая. Масс-спектрометрия органических соединений. М.: Химия, 1986. 311 с.
- 20. Дребущак В.А., Шведенков Г.Ю. Термический анализ: Учеб. пособие. Новосибирск: Изд-во Новосибирского гос. университета, 2003. 114 с. Режим доступа: https://nsu.ru/xmlui/bitstream/handle/nsu/5868/2003-
 Thermal_analysis.pdf?sequence=1&isAllowed=y
- 21. Я. Шестак. Теория термического анализа. М.: Мир. 1987.
- 22. Щедровицкий С. С. Измерение массы, объема и плотности. М., 1981.
- 23. Химическая энциклопедия, в 5 т., под ред. Кнунянца И. Л. М.: Сов. энцикл., 1988-1998.

8.3. Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

- 1. MS Windows 7.
- 2. Офисный пакет LibreOffice.
- 3. Антивирусная программа Dr. Web.
- 4. Программа просмотра файлов PDF Acrobat Reader.
- 5. Интернет-браузеры Mozilla Firefox, Google Chrome, Opera.

Профессиональные базы данных и информационные справочные системы

- Научная электронная библиотека elibrary.ru (http://elibrary.ru);
- Google Scholar полнотекстовый поиск в научных источниках журналах, тезисах, книгах (https://scholar.google.ru);
- Библиографические базы данных: Web of Science, Scopus, РИНЦ, "ВИНИТИ", "Current Contents", "Chemical Abstracts" и т.д.;
- DOAJ Directory of Open Access Journal каталог журналов открытого доступа (www.doaj.org);
- Электронные ресурсы удаленного доступа ГПНТБ России

http://www.gpntb.ru/elektronnye-resursy-udalennogo-dostupa.html

- Электронные каталоги и базы данных ГПНТБ СО РАН <a href="http://webirbis.spsl.nsc.ru/irbis64r_01/cgi/cgiirbis_64.exe?C21COM=F&I21DBN=CAT&P21
- Электронная библиотека ГПНТБ CO PAH (http://www.spsl.nsc.ru/win/nelbib/index-new1.html).
- Электронная библиотека НГУ https://e-lib.nsu.ru//dsweb/HomePage
- Электронная библиотека учебных материалов по химии http://www.chem.msu.su/rus/elibrary/

9. Материально-техническое обеспечение дисциплины.

Чтение лекций по дисциплине осуществляется на базе Института химии твердого тела и механохимии CO PAH.

Учебный класс для чтения лекций оборудован персональным компьютером с необходимым ПО и мультимедийным проектором с экраном.

Практические занятия аспиранты ΜΟΓΥΤ проводить при использовании оборудования ИХТТМ СО РАН, приборный парк которого включает в себя: ИКспектрометр Varian 660 IR, УФ-спектрометр Carry 50, Газовый хромато-масс-спектрометр Agilent 5973N EI/PCI, Установка для работы со сверхкритическими флюидами, рамановский спектрометр RFS-100s (Bruker, Германия), ИК-Фурье спектрометр "Tenzor-27", ИК Фурье-спектрометр «Инфралюм» (Россия), спектрофотометр СФ 56A (Россия), УФ-спектрометры UV-VIS (Shimadzu, Япония), комплекс спектрометрический КСВУ-23 атомно-абсорбционный спектрофотометр C-115-M1; дифрактометры рентгеновские ДРОН-4 (Россия), дифрактометр монокристальный STADI-4 (STOE, Германия), синхронный дериватограф STS 449S Jupiter (Netzsch, Германия), электронные микроскопы JEM-2000FX, JSM-6700F (Jeol, Япония), прибор для измерения удельной поверхности Sorbi (Россия), оптические микроскопы (Karl Zeiss Jena, Германия). Для электрофизических И электрохимических исследований будут использоваться анализаторы диэлектрических свойств и импеданса Novocontrol BETA K (Германия) и Hewlett-Packard 4184A (США), импедансметр «Эллинс» (Россия), измеритель иммитанса (Белоруссия), полярограф РА-2 (Венгрия), автоматическая система для электрофизических и электрохимических исследований ИПУ-01 (изготовитель - ИАиЭ СО РАН), автоматизированная установка для эллипсометрических исследований в процессе электрохимической обработки материалов (изготовитель - ИФП СО РАН).

10. Язык преподавания.

Дисциплина преподается на русском языке.